Micro Imaging Technology Adds Staph Bacteria to Its Catalog of Identifiers

SAN CLEMENTE, CA--(Marketwired - Dec 31, 2013) - Micro Imaging Technology, Inc. (OTCQB: MMTC) announced that its MIT 1000 System can now identify the potentially life-threatening bacteria Staphylococcus. Staph is one of the five most common causes of infections after injury or surgery and can lead to very serious complications with the lung (pneumonia), brain (meningitis), bone (osteopmyelitis), heart (endorcarditis), and blood (bacteremia and septicemia). It is also an important food pathogen. "This is a tremendous step forward for both our technology and our Company," stated Jeff Nunez, MIT's President and CEO. "We have not only added another Identifier to our catalog, but this opens the door for the MIT 1000 Technology to enter the clinical pathogen detection and identification arena. The Identifier is available now and will soon undergo AOAC certification," he continued. Staph can also be contracted through food contamination, as recently reminded by the USDA's announcement involving the recall of dried sausage products in San Jose, California(1). The MIT 1000 is a rapid, bacterial cell-based detection and identification system that can identify pathogenic bacteria, now including Staph, in three minutes (average) at half the cost of the industry average for pathogen tests.

In October 2013, the Company announced that it is collaborating with the Northern Michigan University (NMU) Department of Biology to identify and differentiate Staphylococcus aureus (S. aureus) and the "superbug," Methicillin Resistant S. aureus (MRSA). The goal of this strategic research with NMU is to rapidly and cost-effectively identify these two particular healthcare threats using the MIT 1000 System. Staph infections can range from mild skin problems to potentially fatal conditions if the bacteria invade deeper into the body. Most can be easily treated, however, some Staphs are drug-resistant. The faster the responsible disease causing bacteria is identified, the faster the appropriate treatment can begin. This is the driving goal behind the NMU/MIT collaboration using the MIT 1000 to differentiate between the common S. aureus and MRSA. At this stage, the collaboration involves scientists from MIT and NMU gathering preliminary data and developing collaborative research proposals seeking funding in support of continued research.

Dr. Josh S. Sharp, assistant professor at NMU's Department of Biology, is directing the NMU research on clinical applications of the MIT 1000. "Being able to quickly identify if a patient has an S. aureus infection, and whether or not that S. aureus is MRSA, a strain of S. aureus resistant to certain antibiotics, would be extremely useful in dictating the proper course of treatment for that patient, and ultimately, increase the likelihood of a successful patient outcome," Sharp said.

Micro Imaging Technology's Chief Scientist, Dr. David Haavig, was instrumental in developing the MIT 1000 and is the program director of the effort and will lead MIT's team in the collaboration. "This Staph Identifier is a key addition," he said. "This Staphylococcus Identifier will simplify and speed the creation of our upcoming S. aureus, Staphylococcus epidermidis (S. epidermidis) and MRSA Identifiers." The Staphylococcus Identifier and candidate S. aureus and S. epidermidis Identifiers and an MIT 1000 System will be delivered to Professor Sharp within the next few weeks, then he with his graduate and undergraduate students and we at MIT will begin the preliminary stage of our MRSA collaboration. Meanwhile, MIT is working on a series of Salmonella Identifiers including the common food pathogens S. Enteritidis and S. Typhimurium.

About: Micro Imaging Technology, Inc. Micro Imaging Technology, Inc. is a California-based public company that is also registered to do business under the name Micro Identification Technologies. MIT has developed and patented the MIT 1000, a stand-alone, rapid, optically-based, software driven system that can identify pathogenic bacteria and complete an identification test, after culturing, in three minutes (average) at the lowest cost per test when compared to any other conventional method. It does not rely on chemical or biological agents, conventional processing, fluorescent tags, gas chromatography or DNA analysis. The process requires only clean filtered water and a sample of the unknown bacteria. Revenues for all rapid testing methods exceed $5 billion annually - with food safety accounting for more than $3.5 billion, which is expected to surpass $4.7 billion by 2015 according to BCC Research. In addition, the recently passed "New" U.S. Food Safety Bill is expected to further accelerate the current annual growth rate of 6.6 percent.

In June 2009, the AOAC Research Institute (AOAC RI) awarded the Company Performance Tested Methods SM (PTM) certification for the rapid identification of Listeria. The AOAC RI provides an independent third party evaluation and expert reviews of methods and will award PTM certification to methods that demonstrate performance levels equivalent or better than other certified bacteria identifying methods. The MIT System underwent hundreds of individual tests, including ruggedness and accuracy, to earn AOAC RI's certification for the identification of Listeria.

You can find more information about our company and about Micro Identification Technologies™. Please visit our newly enhanced website at www.micro-identification.com.

This release contains statements that are forward-looking in nature. Statements that are predictive in nature, that depend upon or refer to future events or conditions or that include words such as "expects," "anticipates," "intends," "plans," "believes," "estimates," and similar expressions are forward-looking statements. These statements are made based upon information available to the Company as of the date of this release, and we assume no obligation to update any such forward-looking statements. These statements are not guarantees of future performance and actual results could differ materially from our current expectations. Factors that could cause or contribute to such differences include, but are not limited to dependence on suppliers; short product life cycles and reductions in unit selling prices; delays in development or shipment of new products; lack of market acceptance of our new products or services; inability to continue to develop competitive new products and services on a timely basis; introduction of new products or services by major competitors; our ability to attract and retain qualified employees; inability to expand our operations to support increased growth; and declining economic conditions, including a recession. These and other factors and risks associated with our business are discussed from time to time within our filings with the Securities and Exchange Commission, reference MMTC: www.sec.gov.

(1) December 19, 2013 - Lee Bros. Foodservice Inc., a San Jose, Calif. establishment, is recalling 740 pounds of sausage products that may be contaminated with Staphylococcus aureus enterotoxin, the U.S. Department of Agriculture's Food Safety and Inspection Service (FSIS) announced today.

CONTACT: Jeffrey Nunez President and CEO Email: Email Contact Web Site: www.micro-imaging.com Telephone: (949) 388-4546

Micro Imaging Technology (CE) (USOTC:MMTC)
Historical Stock Chart
From Oct 2024 to Nov 2024 Click Here for more Micro Imaging Technology (CE) Charts.
Micro Imaging Technology (CE) (USOTC:MMTC)
Historical Stock Chart
From Nov 2023 to Nov 2024 Click Here for more Micro Imaging Technology (CE) Charts.